
A Sample-Based Algorithm
for Approximately Testing
𝑟-Robustness of a Digraph

Yuhao Yi, Yuan Wang, KTH
Xingkang He, Notre Dame

Stacy Patterson, RPI
Karl H. Johansson, KTH

CDC 2022
Cancún, Mexico

Background: Resilient Consensus

• Resilient consensus
• Reach agreement in the presence of adversaries

• Types of adversary
• Byzantine
• Malicious

• F-local and F-total sets
• F-local: each honest node has at most F adversarial

neighbors
• F-total: at most F adversarial nodes in the network

• Weighted-Mean-Subsequence-Reduced algorithm

2

W-MSR Algorithm

• At time step 𝑡, a node 𝑖 obtains the values of its in-
neighbors and itself
• It sorts the values and removes values of a node set ℛ! 𝑡

• ℛ! 𝑡 is constructed from the highest and lowest F values in the list,
and modified according to 𝑥![𝑡]

• 𝑥! 𝑡 + 1 = ∑"∈𝒩![&]\ℛ! & 𝑤!" 𝑥"
![𝑡]

• (2𝐹 + 1)-robustness is sufficient for the W-MSR algorithm
to tolerate Byzantine/Malicious F-local/total adversaries

𝑥![𝑡]
↓

𝒩![𝑡]\ℛ! 𝑡

3

𝑟-Robustness

• 𝒓-Reachability: A set 𝑆 is 𝑟-reachable if these exists a
node 𝑣 ∈ 𝑆, 𝑣 has at least 𝑟 in-neighbors from 𝑉\𝑆.
• 𝒓-Robustness: A graph 𝐺 is 𝑟-robust if for every pair of

non-empty, disjoint sets 𝐴, 𝐵 ⊆ 𝑉, at least one of 𝐴 and
𝐵 is 𝑟-reachable.
• The decision problem of 𝑟-robustness is coNP-complete

• No polynomial time algorithm to solve the problem exactly
unless P=NP

• A naïve algorithm enumerates all subset pairs
• We propose an additive approximation algorithm in

dense digraphs.

4

Sampling Vertices

• Randomly sample a node set 𝑈; enumerate partitions of 𝑈

• For 𝑣 ∈ 𝑉\𝑈, approximate numbers of neighbors in 𝐴, 𝐵,
and 𝐶 using neighbors in 𝑈", 𝑈#, and 𝑈$.
• For 𝑣%, 𝑣& ∈ 𝑉\𝑈, the estimated numbers of neighbors in 𝐴,
𝐵, and 𝐶 are NOT independent

𝐶

𝐴 𝐵 𝑈

𝑈"

𝑈# 𝑈$

5

Construct the “Counterexample”

• Suppose there is a partition that refutes 𝑟-
robustness
• For a node 𝑣 ∉ 𝑈, there are 4 cases
• Case 1:
• 𝒩!∩(."∪.#)

.
≥ 1

2
+ ϵ and 𝒩!∩(.$∪.#)

.
≥ 1

2
+ ϵ ,

• with high probability, 𝒩3 ∩ (𝐴 ∪ 𝐶) ≥ 𝑟 , and
𝒩3 ∩ (𝐵 ∪ 𝐶) ≥ 𝑟

• 𝑣 is not in either 𝐴 or 𝐵, w.h.p.
• We assign 𝑣 to 𝐶

6

Construct the “Counterexample”
(cont’d)
• Case 2:

• 𝒩!∩($"∪$#)
$

≥ '
(
+ ϵ, and 𝒩!∩($$∪$#)

$
< '

(
+ ϵ ,

• 𝒩) ∩ (𝐴 ∪ 𝐶) ≥ 𝑟, 𝒩) ∩ (𝐵 ∪ 𝐶) < 𝑟 + 2𝜖𝑛 , w.h.p.
• Not in 𝐵 w.h.p.
• Could be in 𝐴 or 𝐶
• Never a bad idea to assign it to 𝐴 because moving

nodes from 𝐶 to 𝐴
• Never increases 𝒩% ∩ (𝐴 ∪ 𝐶) or 𝒩% ∩ (𝐵 ∪ 𝐶) for any 𝑣

• Assign 𝑣 to 𝐴

7

Construct the “Counterexample”
(cont’d)
• Case 3:
• 𝒩-∩(*.∪*/)

*
< -

.
+ ϵ, and 𝒩-∩(*0∪*/)

*
≥ -

.
+ ϵ ,

• Assign 𝑣 to 𝐵, for similar reasons

• Case 4 (without assuming minimum degree):
• 𝒩-∩(*.∪*/)

* < -
.+ ϵ, and 𝒩-∩(*0∪*/)* < -

.+ ϵ
• w.h.p. , 𝒩/ ∩ 𝐴 ∪ 𝐶 < 𝑟 + 2𝜖𝑛 , and |

|
𝒩/ ∩

𝐵 ∪ 𝐶 < 𝑟 + 2𝜖𝑛
• 𝐴 = 𝑣 , 𝐵 = 𝑉\{𝑣}, 𝐶 = ∅ refutes (2𝑟 + 4𝜖𝑛 + 1)-

robustness

8

Algorithm Outline

• Sample a set 𝑈,
• For each partition π 𝑈 = (𝑈4, 𝑈5 , 𝑈6),

1. assign nodes in 𝑉\𝑈 to 𝐴, 𝐵, 𝐶 using 𝜋(𝑈).
2. Make a pass to reassign misclassified nodes due to

large estimation errors
• There are only a small number of such nodes

• Approximately constructed the “counterexample”

9

Result

Theorem: Given a graph 𝐺, two numbers 𝑟 > 0, 𝜖 ≝ ∆/𝑛 (𝜖 ∈
(0,1]), if the minimum in-degree is at least 2𝑟 + ∆, there is an
algorithm which

• certifies 𝑟-robustness if 𝐺 is (𝑟 + ∆)-robust;
• refutes (𝑟 + ∆)- robustness, with probability at least (1 − 𝛿), if 𝐺 is

NOT 𝑟-robust;
• runs in exp 𝑂 123 4/(78)

7!
⋅ 𝑚 time, which is linear in 𝑚 if 𝜖 is a given

constant

• The algorithm can still be used as a heuristic even if the number of
samples is not large enough.

10

Numerical Examples

• Synthesized networks with 200 nodes, permuted

• 𝑟-robust but not (𝑟 + 1)-robust
• Most of the counterexamples are found in 30s on a

laptop

11

Conclusion and Future Work

• Additive approximation algorithm for testing 𝑟-
robustness

• Future work
• Improve dependency on 𝜖
• Impact of graph regularity
• Local Search Methods
• More experiments and comparisons

12

Thank you!

13

