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Susceptible-Infected-Susceptible (SIS) Model

Modeling the spread of computer 
virus, information, human disease

[Kermack and McKendrick, 1927] 
Compartmental Model

[Ganesh, Massoulié, Towsley, 2005] 
Networked Markov Chain SIS 
Model

[Mieghem, Omic, Kooij, 2009] 
Mean-field Approximations of SIS 
Model
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Susceptible-Infected-Susceptible (SIS) Model

S:Susceptible

I :Infected

[Kermack and McKendrick, 1927] 
Compartmental Model

[Ganesh, Massoulié, Towsley, 2005] 
Networked Markov Chain SIS 
Model

[Mieghem, Omic, Kooij, 2009] 
Mean-field Approximations of SIS 
Model

[Drakopoulos, Ozdaglar, Tsitsiklis, 
2014] Dynamic Curing Policy
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Continuous time Markov chain SIS Model

Contact network 𝐺 = (𝑉, 𝐸)

For any node 𝑖 ∈ 𝑉 and time 𝑡

State: 𝑆𝑖 𝑡 , 𝐼𝑖 𝑡 ∈ {0,1}
𝒊

𝒋

𝑆𝑖 𝑡 = 1
𝐼𝑖 𝑡 = 0

𝑆𝑗 𝑡 = 0

𝐼𝑗 𝑡 = 1
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Continuous time Markov chain SIS Model

Contact network 𝐺 = (𝑉, 𝐸)

For any node 𝑖 ∈ 𝑉 and time 𝑡

State: 𝑆𝑖 𝑡 , 𝐼𝑖 𝑡 ∈ {0,1}

Infection rate of node 𝑣: σ 𝑢,𝑣 ∈𝐸 𝑤𝑢𝑣 𝐼𝑢(𝑡)

Curing rate: 𝜌𝑣(𝑡) for 𝑣 ∈ 𝐼(𝑡)

Curing budget: σ𝑣∈𝑉 𝜌𝑣 𝑡 ≤ 𝑟

𝒊

𝒋

𝑆𝑖 𝑡 = 1
𝐼𝑖 𝑡 = 0

𝑆𝑗 𝑡 = 0

𝐼𝑗 𝑡 = 1
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Continuous time Markov chain SIS Model

Contact network 𝐺 = (𝑉, 𝐸)

For any node 𝑖 ∈ 𝑉 and time step 𝑡′

State: 𝑆𝑖 𝑡′ , 𝐼𝑖 𝑡′ ∈ {0,1}

Infection: σ 𝑢,𝑣 ∈𝐸𝑐 𝑤𝑢𝑣,

Recovery: 𝜌𝑗 = 𝑟

Allocate curing budget to 𝑖 or 𝑗?

𝒊

𝒋

𝜌𝑗 = 𝑟

𝑆𝑖 𝑡′ = 0
𝐼𝑖 𝑡′ = 1

𝑆𝑗 𝑡′ = 1

𝐼𝑗 𝑡′ = 0
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Dynamic Curing

Contact network 𝐺 = 𝑉, 𝐸

Node states: 𝑆𝑖(𝑡) and 𝐼𝑖(𝑡) for all 𝑖 ∈ 𝑉

Dynamic curing: allocate curing rates with 
minimum budget such that the expected 
extinction time is nearly linear.
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Related Concepts

•For 𝐵 ⊂ A, a crusade 𝑝(𝐴, 𝐵) is a sequence of node sets (𝑝0, ⋯ , 𝑝𝑘), where 
𝑝0 = 𝐴, 𝑝𝑘 = 𝐵;  𝑝𝑖 ⊂ 𝑝𝑖−1, 𝑝𝑖−1\𝑝𝑖 = 1 for 𝑖 ∈ [𝑘]

•𝒞 𝐴, 𝐵 : set of all crusades from 𝐴 to 𝐵

•Cut 𝑐(𝐴): number of edges connecting 𝐴 and 𝐴𝑐

•Width 𝑧(𝑝): max0≤𝑖≤𝑘𝑐 𝑝𝑖

•Impedance 𝛿(𝐴): min𝜔∈𝐶𝑟(𝐴,∅)𝑧 𝜔

•Cutwidth 𝑊: 𝛿(𝑉)
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Cutwidth Examples
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CURE Policy

[Drakopoulos, Ozdaglar, Tsitsiklis, 2014]

•Wait until 𝑐(𝐼𝑡) ≤ 𝑟/8. Let 𝐴 ← 𝐼𝑡 right after waiting.

•Segment: Calculate the optimal crusade and the corresponding ordering of 
infected nodes 𝑣1, ⋯ , 𝑣 𝐴 ,  Allocate all curing resources to an arbitrary node 
in 𝐷𝑡 = 𝐼𝑡\ 𝑣2, ⋯ , 𝑣 𝐴  until
1) 𝐷𝑡  is empty, restart a segment

2) 𝐷𝑡 ≥ 𝑟/(8 ⋅ 𝑑max), start a new waiting period

Drawbacks:

Computational Complexity: Calculating the optimal crusade is NP-complete

Waiting period: no measure is taken
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Optimal Crusade

Approximation algorithm for the optimal crusade

Divide and Conquer [Leighton and Rao, 1999]

Applying the algorithm to the subgraph supported on 𝐴,

[BornStein, Vempala, 2003], [Feige, Lee, 2006]

Lemma: Given 𝐺, ∃ an algorithm which calculates a crusade 𝑝 from 𝑉 to ∅, such that
𝑊 ≤ 𝑧 𝑝 ≤ 𝑂 log2 𝑛 𝑊.

Theorem: Given 𝐺 and 𝐴 ⊆ 𝑉, ∃ an algorithm which calculates a crusade 𝑝 from 𝐴 to 
∅, such that

𝛿(𝐴) ≤ 𝑧 𝑝 ≤ 𝑂 log2 𝑘 𝛿(𝐴).

Theorem: Given 𝐺 and 𝐴 ⊆ 𝑉, ∃ an algorithm which calculates a crusade 𝑝 from 𝐴 to 
∅, such that

𝛿(𝐴) ≤ 𝑧 𝑝 ≤ 𝑂(log3/2 𝑘 ⋅ log log 𝑘)𝛿(𝐴).
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Network Design

Nearly linear extinction time is guaranteed if
𝑟 ≥ 4𝛼𝑊 log2 𝑛 .

Given a dynamic curing policy, find the 
minimum edge weight reductions such that 
𝑊 ≤ 𝑏.

Instead of 𝑊, we minimize 𝑧 𝑝  after fixing the 
crusade 𝑝.

1. Fractional: Linear program

2. Integral: LP relaxation with a greedy 
rounding
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Network Design

Given a Graph 𝐺 with weight function 𝑤, a threshold 𝑏, find the edge 
reduction ∆𝑢𝑣  of each edge 𝑢𝑣 ∈ 𝐸 for the optimization program

𝐺′is the modified graph with ∆′𝑢𝑣= 𝑤𝑢𝑣 − ∆𝑢𝑣.

Theorem: A polynomial time algorithm finds the optimal solution.
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Network Design

Given a Graph 𝐺 with weight function 𝑤, a threshold 𝑏, find the edge 
reduction ∆𝑢𝑣  of each edge 𝑢𝑣 ∈ 𝐸 for the optimization program

𝐺′is the modified graph with ∆′𝑢𝑣= 𝑤𝑢𝑣 − ∆𝑢𝑣.

Theorem: A polynomial time algorithm finds a solution with an additive error 
of at most 𝑘𝑤max.
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Network Design

Consider the integral version with uniform edge weights

Equivalent to the Interval Scheduling Problem on 𝑙 machines Problem

Earlist finish time first algorithm

Theorem: A greedy algorithm finds the optimal solution in 𝑂(𝑚 log 𝑚) 
running time.
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Network Design with Arbitrary Curing Policy 

• Minimizing the maximum cut of a (sub)graph.

• Define 𝜙 A = max
𝑄⊆𝐴

𝑐(𝑄) .

• Can be relaxed to a convex-concave minimax optimization problem

• Hyperplane rounding [Goemans and Williamson, 1995]

Theorem: Given a graph 𝐺 and a set 𝐴, an edge weight reduction budget 
𝑏, there exists an polynomial algorithm that finds an 1.44-approximation 
of the optimal 𝜙𝐺′ 𝐴  with the same budget 𝑏.
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Numerical Simulations (Curing Policies)

CURE policy w/ the proposed approximation against Four Baselines

1. Uniform (static): the curing budget is uniformly allocated to all nodes

2. Degree (static): proportional to the degree of nodes

3. Uniform (dynamic): uniformly allocated to all currently infected nodes

4. Degree (dynamic):  proportional to the degree of currently infected nodes
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Numerical Simulations (Curing Policies)
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Numerical Simulations (Network Design)

We compare the following 3 cases:

1. CURE policy w/o network design

2. CURE policy augmented by LP-based edge weight reduction

3. Random Curing augmented by SDP-based edge weight reduction
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Numerical Simulations (Network Design)
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Future Directions

▪ Consider demographic fairness

▪ Minimizing impedance without fixing the crusade 𝑝

▪ Robustness of the algorithms

▪ Directed Networks
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Thank you!

Questions
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