Disagreement and Polarization in Two-Party Social Networks

Yuhao Yi¹ Stacy Patterson¹

¹Department of Computer Science, Rensselaer Polytechnic Institute

Speaker: Yuhao Yi

Outline

Disagreement and polarization in consensus networks

- Background on societal disagreement and polarization
- French-DeGroot model and Friedkin-Johnsen model
- Definitions of disagreement and polarization
- 2 Analysis and optimization
 - Preliminaries
 - Analyzing and optimizing the French-DeGroot model
 - Analyzing and optimizing the Friedkin-Johnsen model

In a social network, nodes are influenced by internal or external sources of polarizing opinions.

- *Disagreement*: the differences between neighbors.
- *Polarization*: the deviation of states from the system average.
- Group consensus in networks with communities.
- Trade-off between disagreement and polarization ^[1].

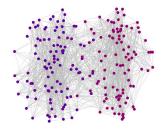


Figure: Opinions in a social network with external influence.

^[1]Musco, C., Musco, C., and Tsourakakis, C.E. WWW'18.

French-DeGroot model

- Sources of polarizing opinions (leaders) are located in the network.
- Nodes are divided into leader set *S* and follower set *F*.

$$x_{v}(0) = x_{v}^{0}, \qquad v \in S,$$

$$\dot{x}_{v}(t) = -\sum_{u \in N_{v}} w(u, v)(x_{v}(t) - x_{u}(t)), \qquad v \in F.$$

- w(u, v): weight of the edge (u, v).
- We consider the case where $S = \{s_0, s_1\}$.
- The system has a unique steady state \hat{x} .

Friedkin-Johnsen model

- Sources of polarizing opinions are external.
- Every node is affected by external influence of both parties.

$$\dot{x}_{v}(t) = \beta_{v} \kappa_{v} \cdot (1 - x_{v}(t)) + (1 - \beta_{v}) \kappa_{v} \cdot (0 - x_{v}(t)) + \sum_{u \in N_{v}} w(u, v) (x_{u}(t) - x_{v}(t)) ,$$

- $\kappa_v \ge 0$: susceptibility to persuasion^[2] of node v.
- $\beta_v \in [0,1]$: preference of node v to opinion 1 over opinion 0.
- The system has a unique steady state \hat{x} .

^[2]Abebe, R., Kleinberg, J., Parkes, D., and Tsourakakis, C.E. KDD'18.

Definitions of Disagreement and Polarization

- Disagreement between nodes: $d(u, v) \stackrel{\text{def}}{=} w(u, v) (\hat{x}_u \hat{x}_v)^2$.
- Disagreement in a network: $\mathcal{D} \stackrel{\mathrm{def}}{=} \sum_{(u,v) \in E} d(u,v)$.
- Polarization in a French-DeGroot network: $\mathcal{P} \stackrel{\text{def}}{=} \sum_{u \in V} \left(\hat{x}_u - \frac{\sum_{u \in V} \hat{x}_u}{n} \mathbf{1} \right)^2.$
- Polarization in a Friedkin-Johnsen model: $\tilde{\mathcal{D}}^{\text{def}} \sum_{u \in V^K} (\hat{u}_{u,v} - \mathbf{1})^2$ where $\hat{u}_{u} \in V^K$

 $\tilde{\mathcal{P}} \stackrel{\text{def}}{=} \sum_{u \in V} (\hat{x}_u - \alpha \mathbf{1})^2$, where $\alpha = \frac{\sum_{u \in V} \kappa_u \ddot{x}_u}{\sum_{u \in V} \kappa_u}$ is the consensus value when $w(u, v) \to +\infty$ for all edges.

- Polarization-Disagreement Index: $\mathcal{I} = \rho \mathcal{D} + (1 \rho) \mathcal{P}$.
- Weighted Polarization-Disagreement Index: $\tilde{\mathcal{I}} = \rho \mathcal{D} + (1 \rho) \tilde{\mathcal{P}}$.

Outline

Disagreement and polarization in consensus networks

- Background on societal disagreement and polarization
- French-DeGroot model and Friedkin-Johnsen model
- Definitions of disagreement and polarization
- 2 Analysis and optimization
 - Preliminaries
 - Analyzing and optimizing the French-DeGroot model
 - Analyzing and optimizing the Friedkin-Johnsen model

Graph Laplacians

$$s \xrightarrow{1}_{2} \xrightarrow{3}_{t} \Leftrightarrow \begin{pmatrix} 3 & -1 & -2 \\ -1 & 4 & -3 \\ -2 & -3 & 5 \end{pmatrix}$$
Coordinates \Leftrightarrow Vertices
Off-diagonal entries \Leftrightarrow Edges
Laplacian $L_{u,v} \stackrel{\text{def}}{=} \begin{cases} \sum_{u \neq v} w(u,v) & u = v \\ -w(u,v) & u \neq v. \end{cases}$

Graph Laplacians

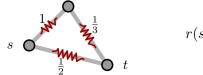
$$s \stackrel{1}{\bigcirc} 1 \stackrel{3}{\bigcirc} t \Leftrightarrow \begin{pmatrix} 3 & -1 & -2 \\ -1 & 4 & -3 \\ -2 & -3 & 5 \end{pmatrix}$$
 Coordinates \Leftrightarrow Vertices
Off-diagonal entries \Leftrightarrow Edges

• Laplacian
$$L_{u,v} \stackrel{\text{def}}{=} \begin{cases} \sum_{u \neq v} w(u,v) & u = v \\ -w(u,v) & u \neq v. \end{cases}$$

•
$$L = \sum_{e \in E} w(u, v) b_{u,v} b_{u,v}^T$$
, where $b_{u,v} = e_u - e_v$.
 $\begin{pmatrix} 3 & -1 & -2 \\ -1 & 4 & -3 \\ -2 & -3 & 5 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 2 & 0 & -2 \\ 0 & 0 & 0 \\ -2 & 0 & 2 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 3 & -3 \\ 0 & -3 & 3 \end{pmatrix}$.
• L is PSD as $x^T L x = \sum_{(u,v) \in E} w(u,v)(x_u - x_v)^2$.

• Defining pseudoinverse L^{\dagger} by inverting all nonzero eigenvalues.

Resistance distance and biharmonic distance



$$r(s,t) = \frac{1}{\frac{3}{4}+2} = \frac{4}{11}\,\Omega$$

- The resistance distance is defined as the voltage difference between u and v when unit current is injected at u and extracted from v. $r(u, v) = b_{u,v}^{\top} L^{\dagger} b_{u,v}$, for any vertex pair $u, v^{[3]}$.
- The biharmonic distance^[4] is defined on any vertex pair u, v:

$$d_B(s,t) = \sqrt{b_{u,v}^\top L^{2\dagger} b_{u,v}} \,.$$

^[3]Klein, D.J. and Randić, M. (1993). Resistance distance. J. Math. Chem., 12(1), 81–95.

^[4]Lipman, Y., Rustamov, R.M., and Funkhouser, T.A. (2010). Biharmonic distance. ACM Trans. Graph., 29(3), 27.

Analyzing the French-DeGroot model (I)

• Matrix form ($\hat{x}_S = \{0, 1\}$):

$$\dot{x}_S = \vec{0}, \qquad \qquad L = \begin{pmatrix} L_{S,S} & L_{S,F} \\ L_{F,S} & L_{F,F} \end{pmatrix}$$

• Steady state:
$$\hat{x} = -(L_{F,F})^{-1}L_{F,S}x_S = -(L_{F,F})^{-1}L_{F,s_1}$$
.

Lemma

In a two-party French-DeGroot model, let s_0 and s_1 be the leaders for opinion 0 and 1. The steady state \hat{x}_v ^[5] of node v is given by $\hat{x}_v = \frac{b_{v,s_0}^T L^{\dagger} b_{s_1,s_0}}{b_{s_1,s_0}^T L^{\dagger} b_{s_1,s_0}}$.

^[5]Como, G. and Fagnani, F. (2016). From local averaging to emergent global behaviors: The fundamental role of network interconnections. Syst. Contr. Lett., 95, 70–76.

Analyzing the French-DeGroot model (II)

Theorem (Disagreement)

In the French-DeGroot model, the disagreement $\ensuremath{\mathcal{D}}$ in the considered opinion network is

$$\mathcal{D} = \frac{1}{b_{s_1,s_0}^T L^{\dagger} b_{s_1,s_0}} = \frac{1}{r_{s_1,s_0}}$$

Theorem (Polarization)

The polarization $\mathcal P$ in the French-DeGroot opinion network is

$$\mathcal{P} = \frac{b_{s_1,s_0}^T L^{2\dagger} b_{s_1,s_0}}{(b_{s_1,s_0}^T L^{\dagger} b_{s_1,s_0})^2} = \left(\frac{d_B(s_1,s_0)}{r_{s_1,s_0}}\right)^2$$

By the Cauchy-Schwartz inequality, $\mathcal{P} \geq \frac{1}{2}$.

In a French-DeGroot model, given the graph G = (V, E, w) and a opinion leader s_0 for opinion 0, choose a single opinion leader s_1 for opinion 1 such that $\mathcal{I} = \rho \mathcal{D} + (1 - \rho) \mathcal{P}$ (for a fixed ρ) is minimized.

- \mathcal{D} is minimized when r_{s_0,s_1} is maximized.
- \mathcal{P} is determined by $\frac{d_B(s_0,s_1)}{r_{s_0,s_1}}$.
- $O(n^3)$ algorithm (can be improved).

In a French-DeGroot model, if the vertex set V is given, design the edge set E and weight function w of the graph G = (V, E, w) with a cardinality constraint $|E| \leq k$ and a budget on total weight $\sum_{e \in E} w(e) \leq W$, such that $\max_{s_0,s_1} \mathcal{I}(s_0,s_1)$ is minimized.

- \$\mathcal{P}(s_0, s_1)\$ is minimized for all pairs of nodes \$s_0, s_1\$ iff \$G\$ is a complete graph.
- $\mathcal{P}(s_0, s_1)$ will not change for any s_0, s_1 if edge weights are uniformly scaled.

Network design: a robust structure (II)

• Considering
$$k < \frac{n(n-1)}{2}, (|E| \le k).$$

Tool: spectral sparsification [6]

Theorem

In a French-DeGroot model, there exists a graph $H' = (V, \mathcal{E}, \bar{w})$ (and a polynomial time algorithm to find H') with $O(\frac{n}{\epsilon^2})$ edges that satisfies $\sum_{e \in E} \bar{w}(e) \leq W$, such that for any leaders $s_0, s_1, \mathcal{P} \in [\frac{1}{2}, (1+\epsilon)\frac{1}{2}]$.

• $\mathcal{D}(s_0, s_1)$ can be arbitrarily small for any s_0, s_1 if we multiply all edge weights with a sufficient small number a.

^[6]Batson, J., Spielman, D.A., and Srivastava, N. (2012). Twice-ramanujan sparsifiers. SIAM J. Comput., 41(6), 1704–1721.

In a French-DeGroot model, if the vertex set V is given, design the edge set E and weight function w of the graph G = (V, E, w) with a cardinality constraint $|E| \le k$ and a budget on total weight $W_{\ell} \le \sum_{e \in E} w(e) \le W_u$ such that $\max_{s_0, s_1} \mathcal{I}(s_0, s_1)$ is minimized.

- $\max_{s_0,s_1} \mathcal{D}(s_0,s_1)$ is also minimized when G is a complete graph (with all edges weighted $\frac{2W_\ell}{n(n-1)}$).
- $(1 + \epsilon)$ -approximation for optimal \mathcal{D} , \mathcal{P} , and \mathcal{I} by sparsifying a complete graph.

Analyzing the Friedkin-Johnsen model

- Matrix form: $\dot{x}(t) = -(L+K)x(t) + BK\vec{1}$.
- Steady state: $\hat{x} = (L+K)^{-1}BK\vec{1} \, .$

where B and K are diagonal matrices. $B_{v,v}=\beta_v$, $K_{v,v}=\kappa_v$.

Theorem

In the Friedkin-Johnsen model, the disagreement \mathcal{D} is $\mathcal{D} = \tilde{s}^T (L+K)^{-1} L (L+K)^{-1} \tilde{s}$, the weighted polarization $\tilde{\mathcal{P}}$ is $\tilde{\mathcal{P}} = \tilde{s}^T (L+K)^{-1} K (L+K)^{-1} \tilde{s}$. where $\tilde{s} = P^T B K \mathbf{1}$, $P = I - \frac{\vec{1} \vec{\kappa}^T}{\sum_{v \in V} \kappa_v}$.

In the Friedkin-Johnsen Model, given the node set V and edge set $E, \, {\rm design}$

the edge weights $w(e) \in [\ell, p]$ with budget $\sum_{e \in E} w(e) \leq W$ such that the quantity $\tilde{\mathcal{I}} = \rho \mathcal{D} + (1 - \rho) \tilde{\mathcal{P}}$ (for a fixed ρ) is minimized.

Theorem

The weighted Polarization-Disagreement Index $ilde{\mathcal{I}}=rac{1}{2}\mathcal{D}+rac{1}{2} ilde{\mathcal{P}}$ is a convex

function of the edge weights $ec{w}$ of the graph, where the entries of the vector $ec{w}$

are defined as $\vec{w_e} = w(e)$, $e \in E$.

- Proof: the epigraph of $f(Y, \tilde{s}) = \tilde{s}^T Y^{-1} \tilde{s}$, where Y = (L + K), is a convex set in both Y and s.
- Polynomial time solvable by using a standard SDP solver.

Consider the Friedkin-Jonson Model for G = (V, E, w), and an integer k. Assume the preference of node $v \in V$ is either 0 or 1, then V can be partitioned into two disjoint sets P_0 and P_1 , where $\beta_v = 0$ for $v \in P_0$ and $\beta_v = 1$ for $v \in P_1$. Flip the preferences β_v of all nodes in Q, where $Q \subseteq P_0$ (or exclusively $Q \subseteq P_1$), $|Q| \leq k$, such that $\tilde{\mathcal{I}}$ is minimized.

Theorem

The indices \mathcal{D} , $\tilde{\mathcal{P}}$, and $\tilde{\mathcal{I}}$ are all convex functions of the vector $\vec{\beta} \in \mathbb{R}^n$, where the entries of the vector are defined as $\vec{\beta}_v = \beta_v$ for all $v \in V$.

Network design: designing preferences

• Heuristic algorithm: convex relaxation with ℓ_1 regularization.

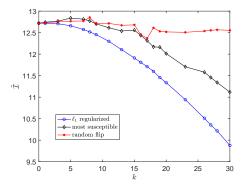


Figure: The value of $\tilde{\mathcal{I}}$ ($\rho = 1/2$) and number of flips k we get from the ℓ_1 regularized optimization, compared with choosing the k most susceptible nodes in P_0 , and choosing random nodes in P_0 .

Conclusion and future work

Conclusion

 Disagreement and polarization in French-DeGroot and Friedkin-Johnsen networks.

- Analysis and optimization.
- Analytical and numerical examples.
- Future work
 - Directed networks.
 - 2 Top-k leader selection.
 - Optimizing susceptibility of persuasion.

Thank you!