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Disagreement and Polarization

In a social network, nodes are influenced by internal or external

sources of polarizing opinions.

Disagreement: the differences between neighbors.

Polarization: the deviation of states from the system average.

Group consensus in networks with communities.

Trade-off between disagreement and polarization [1].

Figure: Opinions in a social

network with external influence.

[1]Musco, C., Musco, C., and Tsourakakis, C.E. WWW‘18.
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French-DeGroot model

Sources of polarizing opinions (leaders) are located in the network.

Nodes are divided into leader set S and follower set F .

xv(0) = x0
v, v ∈ S ,

ẋv(t) = −
∑
u∈Nv

w(u, v)(xv(t)− xu(t)), v ∈ F .

w(u, v): weight of the edge (u, v).

We consider the case where S = {s0, s1}.

The system has a unique steady state x̂.
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Friedkin-Johnsen model

Sources of polarizing opinions are external.

Every node is affected by external influence of both parties.

ẋv(t) =βvκv · (1− xv(t)) + (1− βv)κv · (0− xv(t))

+
∑
u∈Nv

w(u, v)(xu(t)− xv(t)) ,

κv ≥ 0: susceptibility to persuasion[2] of node v.

βv ∈ [0, 1]: preference of node v to opinion 1 over opinion 0.

The system has a unique steady state x̂.

[2]Abebe, R., Kleinberg, J., Parkes, D., and Tsourakakis, C.E. KDD’18.
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Definitions of Disagreement and Polarization

Disagreement between nodes: d(u, v)
def
= w(u, v)(x̂u − x̂v)

2.

Disagreement in a network: D def
=
∑

(u,v)∈E d(u, v) .

Polarization in a French-DeGroot network:

P def
=
∑

u∈V

(
x̂u −

∑
u∈V x̂u

n
1
)2

.

Polarization in a Friedkin-Johnsen model:

P̃ def
=
∑

u∈V (x̂u − α1)2 , where α =
∑

u∈V κux̂u∑
u∈V κu

is the

consensus value when w(u, v) → +∞ for all edges.

Polarization-Disagreement Index: I = ρD + (1− ρ)P .

Weighted Polarization-Disagreement Index: Ĩ = ρD+ (1− ρ)P̃ .
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Defining pseudoinverse G† by inverting all nonzero eigenvalues
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Coordinates⇔ Vertices

Off-diagonal entries⇔ Edges

Laplacian Lu,v
def
=


∑

u̸=v w(u, v) u = v

−w(u, v) u ̸= v.

L =
∑
e∈E

w(u, v)bu,vb
T
u,v , where bu,v = eu − ev .

 3 −1 −2

−1 4 −3

−2 −3 5

 =

 1 −1 0

−1 1 0

0 0 0

 +

 2 0 −2

0 0 0

−2 0 2

 +

0 0 0

0 3 −3

0 −3 3

 .

L is PSD as xTLx =
∑

(u,v)∈E w(u, v)(xu − xv)
2.

Defining pseudoinverse L† by inverting all nonzero eigenvalues.
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Resistance distance and biharmonic distance
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The resistance distance is defined as the voltage difference between

u and v when unit current is injected at u and extracted from v.

r(u, v) = b⊤u,vL
†bu,v , for any vertex pair u, v[3].

The biharmonic distance[4] is defined on any vertex pair u, v:

dB(s, t) =
√
b⊤u,vL

2†bu,v .

[3]Klein, D.J. and Randić, M. (1993). Resistance distance. J. Math. Chem., 12(1), 81–95.
[4]Lipman, Y., Rustamov, R.M., and Funkhouser, T.A. (2010). Biharmonic distance. ACM Trans.

Graph., 29(3), 27.
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Analyzing the French-DeGroot model (I)

Matrix form (x̂S = {0, 1}):

ẋS = 0⃗ ,

ẋF = −LF,FxF − LF,SxS ,
L =

(
LS,S LS,F

LF,S LF,F

)
.

Steady state: x̂ = −(LF,F )
−1LF,SxS = −(LF,F )

−1LF,s1 .

Lemma

In a two-party French-DeGroot model, let s0 and s1 be the leaders for opinion

0 and 1. The steady state x̂v
[5] of node v is given by x̂v =

bTv,s0L
†bs1,s0

bTs1,s0L
†bs1,s0

.

[5]Como, G. and Fagnani, F. (2016). From local averaging to emergent global behaviors: The

fundamental role of network interconnections. Syst. Contr. Lett., 95, 70–76.
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Analyzing the French-DeGroot model (II)

Theorem (Disagreement)

In the French-DeGroot model, the disagreement D in the considered opinion

network is

D =
1

bTs1,s0L
†bs1,s0

=
1

rs1,s0
.

Theorem (Polarization)

The polarization P in the French-DeGroot opinion network is

P =
bTs1,s0L

2†bs1,s0
(bTs1,s0L

†bs1,s0)
2
=

(
dB(s1, s0)

rs1,s0

)2

.

By the Cauchy-Schwartz inequality, P ≥ 1
2 .
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Network design: leader selection

Problem

In a French-DeGroot model, given the graph G = (V,E,w) and a opinion

leader s0 for opinion 0 , choose a single opinion leader s1 for opinion 1 such

that I = ρD + (1− ρ)P (for a fixed ρ) is minimized.

D is minimized when rs0,s1 is maximized.

P is determined by dB(s0,s1)
rs0,s1

.

O(n3) algorithm (can be improved).
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Network design: a robust structure (I)

Problem

In a French-DeGroot model, if the vertex set V is given, design the edge set

E and weight functionw of the graph G = (V,E,w) with a cardinality

constraint |E| ≤ k and a budget on total weight
∑

e∈E w(e) ≤ W , such that

maxs0,s1 I(s0, s1) is minimized.

P(s0, s1) is minimized for all pairs of nodes s0, s1 iffG is a

complete graph.

P(s0, s1) will not change for any s0, s1 if edge weights are

uniformly scaled.
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Network design: a robust structure (II)

Considering k < n(n−1)
2 , (|E| ≤ k).

Tool: spectral sparsification [6]

Theorem

In a French-DeGroot model, there exists a graph H ′ = (V, E , w̄) (and a

polynomial time algorithm to find H ′) with O( n
ϵ2 ) edges that satisfies∑

e∈E w̄(e) ≤ W , such that for any leaders s0, s1, P ∈ [ 12 , (1 + ϵ) 12 ].

D(s0, s1) can be arbitrarily small for any s0, s1 if we multiply all

edge weights with a sufficient small number a.

[6]Batson, J., Spielman, D.A., and Srivastava, N. (2012). Twice-ramanujan sparsifiers. SIAM J.

Comput., 41(6), 1704–1721.
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Network design: a robust structure (III)

Problem

In a French-DeGroot model, if the vertex set V is given, design the edge set

E and weight functionw of the graph G = (V,E,w) with a cardinality

constraint |E| ≤ k and a budget on total weight

Wℓ ≤
∑

e∈E w(e) ≤ Wu such that maxs0,s1 I(s0, s1) is minimized.

maxs0,s1 D(s0, s1) is also minimized whenG is a complete graph

(with all edges weighted 2Wℓ

n(n−1) ).

(1 + ϵ)-approximation for optimal D, P , and I by sparsifying a

complete graph.
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Analyzing the Friedkin-Johnsen model

Matrix form: ẋ(t) = −(L+K)x(t) +BK1⃗ .

Steady state:
x̂ = (L+K)−1BK1⃗ .

where B andK are diagonal matrices. Bv,v = βv ,Kv,v = κv .

Theorem

In the Friedkin-Johnsen model, the disagreement D is
D = s̃T (L+K)−1L(L+K)−1s̃ ,

the weighted polarization P̃ is
P̃ = s̃T (L+K)−1K(L+K)−1s̃ .

where s̃ = PTBK1, P = I − 1⃗κ⃗T∑
v∈V κv

.
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Network design: designing weights

Problem
In the Friedkin-Johnsen Model, given the node set V and edge set E, design

the edge weights w(e) ∈ [ℓ, p] with budget
∑

e∈E w(e) ≤ W such that the

quantity Ĩ = ρD + (1− ρ)P̃ (for a fixed ρ) is minimized.

Theorem

The weighted Polarization-Disagreement Index Ĩ = 1
2D + 1

2 P̃ is a convex

function of the edge weights w⃗ of the graph, where the entries of the vector w⃗

are defined as w⃗e = w(e), e ∈ E.

Proof: the epigraph of f(Y, s̃) = s̃TY −1s̃, where Y = (L+K), is a

convex set in both Y and s.

Polynomial time solvable by using a standard SDP solver.
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Network design: designing preferences

Problem

Consider the Friedkin-Jonson Model for G = (V,E,w), and an integer k.

Assume the preference of node v ∈ V is either 0 or 1, then V can be

partitioned into two disjoint sets P0 and P1, where βv = 0 for v ∈ P0 and

βv = 1 for v ∈ P1. Flip the preferences βv of all nodes in Q, where

Q ⊆ P0 (or exclusively Q ⊆ P1), |Q| ≤ k, such that Ĩ is minimized.

Theorem

The indices D, P̃ , and Ĩ are all convex functions of the vector β⃗ ∈ Rn, where

the entries of the vector are defined as β⃗v = βv for all v ∈ V .
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Network design: designing preferences

Heuristic algorithm: convex relaxation with ℓ1 regularization.
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Figure: The value of Ĩ (ρ = 1/2) and number of flips k we get from
the ℓ1 regularized optimization, compared with choosing the
k most susceptible nodes in P0, and choosing random nodes in P0.
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Conclusion and future work

Conclusion

1 Disagreement and polarization in French-DeGroot and

Friedkin-Johnsen networks.

2 Analysis and optimization.

3 Analytical and numerical examples.

Future work

1 Directed networks.

2 Top-k leader selection.

3 Optimizing susceptibility of persuasion.
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Thank you!
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